
Evaluation of Component-Based
Reconfigurable Machine Controllers

Sri Kolla
Department of Electrical Engineering, Bowling Green State University, USA

John Michaloski and William Rippey
National Institute of Standards and Technology, Gaithersburg, MD, USA

ABSTRACT

The lack of interoperability and integration standards is severely hindering
manufacturing productivity. To address this problem, a General Motion
Control (GMC) Testbed has been developed at National Institute of
Standards and Technology (NIST) with one of its goals to validate the
Open Modular Architecture Controller (OMAC) interface specification for
reconfigurable, plug-and-play open-architecture controllers. The GMC
validation testbed was built using Microsoft Component Object Model
(COM) components. This paper will review software programming issues
and the use of Microsoft COM in the development of machine control
components. Strategies and tests of COM programming for a controller
will be discussed.

KEYWORDS: open architecture, Finite State Machine, component,
module, control, standard, motion, machine

INTRODUCTION

The increasing pressures on manufacturers to improve time to market and integrate the
shop floor directly into the enterprise business systems places a premium on better
techniques to design, integrate, test, evaluate, and later reconfigure control systems. Lost
time and money in manufacturing systems integration, testing, and installation is
profound. The Manufacturing Execution Systems Association (MESA) estimates that for
every dollar spent on software, an additional $4 is required to install and integrate it. [3]
The 1999 Robotics Industry Forum estimates that integration and deployment of robot
systems typically cost 3 to 5 times the cost of the robot itself. The root of the problem can
be traced to the lack of interoperability. NIST has long been committed to helping
industry improve interoperability and systems’ integration through standards
participation. [4,6] In the area of motion-based control systems, the NIST Intelligent
Systems Division has developed a General Motion Control (GMC) testbed to conduct a
variety of development, safety, integration and performance evaluations. One area of
research within the NIST GMC testbed is to assess the efficacy of component-based
technology in controller design and development. This paper will discuss preliminary

drussell
Proceedings of the World Automation Congress (WAC) 2002, as part of the International Symposium on Robotics and Applications (ISORA), Orlando, FL, June 9-13, 2002.

results from the validation of the Open Architecture Modular Controller (OMAC)
Application Programming Interfaces (API) component-based specification. The OMAC
API, developed under the auspices of the OMAC Users Group [9], tackles the more
complex open architecture controller requirements –plug-and-play, reconfigurability,
extensibility, and reusability – by means of component-based technology. The paper will
start by reviewing the OMAC API. A brief overview of the NIST GMC testbed hardware
and software will be given. The Microsoft Component Object Model (COM) and related
software development strategies will be discussed. Empirical observations concerning
COM and OMAC API control component development will be given (see [1] for
observations on effective COM development in general).

OMAC API Overview

The OMAC API specification contains machine control APIs, as well as a formal API to
address the integration and collaboration of components. Figure 1 shows a Unified
Modeling Language (UML) [10] hierarchy diagram of the OMAC API. OMAC API uses
several terms to differentiate component concepts. The term “Component” applies to any
reusable piece of software, while the term “Module” refers to a aggregating of
components. The term “Task” is applied to a type of component that encapsulates
programmable behavior containing a series of steps, running to completion that may be
rerun.

OMAC API modules shown in Figure 1 include the following. Axis handles servo
motion control. Axis Group coordinates multiple axes motions. Task Coordinator handles
sequencing of operations. Input-Output (IO) Device manages communication between the
physical hardware device and IO software, and is responsible for managing a group of IO
points. Human Machine Interface (HMI) coordinates human interaction with a controller.

 Components Modules

n

n

n n

n

Application

Inheritence

Aggregation

Navigability

Legend Legend Task

Oma
ModulSystem

Coordinator
System

Coordinator

Domain
Coordinator

Domain
Coordinator

ITask ITask

IProgram IProgram

Discrete
Logic

Discrete
Logic

IO
Device

IO
Device

Task
Coordinator

Task
Coordinator

Axis Axis

Axis Group Axis Group

HMI HMI

Omac
Module IOmac n

Control
Law

Control
Law

Process
Model

Process
Model

Kinematics
Model

Kinematics
Model

IO Point IO Point

 Figure 1. OMAC API UML Abstraction Hierarchy

Discrete Logic handles IO programming. Domain Coordinator creates OMAC
components for a single address space. System Coordinator manages a set of Domain
Coordinators. OMAC API components shown in Figure 1 include the following. Control
Law calculates servo loop setpoints. IO Point provides typed (e.g., long, scaled) reading
or writing of physical or logical data points. Kinematics Model handles geometrical
properties of motion. Process Model integrates sensor data and control.

A major goal of the OMAC API is to leverage mainstream, high-volume, component
technology. Hence, the current OMAC API specification is defined using Microsoft
Interface Definition Language (MIDL) – the basis for COM. Adoption of the OMAC API
specification would allow control vendors to supply standard components that machine
suppliers could then easily configure and integrate to build machine control systems.
Additionally, end-users would then be able to easily reconfigure these systems based on
evolving system requirements. The OMAC API also contains introspective component
properties to improve developer maintenance and diagnostics, plus allowing components
to be used at design time in an Integrated Development Environment (IDE) as well as
runtime.

NIST GMC TESTBED SYSTEM DESIGN

To develop a motion control testbed representative of a broad range of factory floor
operations, the testbed focus was on automation markets eager for advances in
component integration and interoperability. The focus was on packaging applications
since they require high accuracy, high-speed regulation, and rapid changeover between
product lines. The packaging industry is undergoing a design transformation, moving
from mechanical control solutions using gears, cams, and chains, to electronic solutions
using servomotors and software control.

Hardware

The NIST GMC testbed includes a variety of equipment found in packaging and other
manufacturing factory floor operations. The testbed was built from commercial-off-the-
shelf automation equipment and general-purpose computers. Networked IO was a testbed
requirement as it lowers costs from common wiring and communication protocol. The
initial NIST GMC testbed packaging application was to control a bottle conveyor and
perform various quality checks as the bottles moved along the conveyor. DeviceNet was
selected as the network communication protocol, since it is an international device-level
IO standard (e.g., IEC 62026/3) with a wide-variety of supporting equipment.

The testbed system design includes two positioning servo drives with a DeviceNet
interface for digital positioning control of brushless servomotors, used to power the
conveyor chain. The servomotors provide higher precision control of chain speed. The
DeviceNet IO equipment in the testbed includes: 1) a general-purpose modular discrete
IO with 4 inputs and 4 outputs, 2) several binary IO modules and wiring blocks, and 3) a
4 color stack light IO module to color code for displaying machine status. IO modules of
different personalities interlock so that the communications adapter can access device
information and make it available over DeviceNet. These IO modules were wired to
accept simple contact switches as well as 3-wire electronic proximity and photoelectric
sensors.

NIST GMC TESTBED SOFTWARE DESIGN

The thrust of the NIST GMC testbed was to evaluate the development, integration and
maintenance performance using Microsoft COM. [7] This emphasis on COM resulted in
an initial soft-real-time development platform based on Windows NT/2000. Components
developed under Windows NT/2000 can in theory run under Window/CE, which is a
hard-real-time operating system. Real-time control issues using Microsoft operating
systems are addressed in [2,11]. The suitability of COM for motion control, given its
inherent complexity and original design for business applications, were a primary
research issue. Issues such as ease of programmability, diagnostic capabilities, and
overall performance were also considered.

Microsoft COM

COM is a component technology that allows objects to interact within a single process
or across process and machine boundaries. The only way to manipulate the data
associated with an COM object is through an interface on the object. The NIST GMC
testbed developed a suite of COM components based on the OMAC API specification,
while varying aspects of the OMAC API specification that were substandard. The in-
house NIST GMC components were developed using Microsoft Visual C++, which
includes many programming tools to simplify COM component development. Using
programming environments other than Visual C++ to build COM components is possible;
but no consideration was given to this aspect during the initial testbed development. In
addition, most in-house COM components were “local”, where the COM interface
implicitly supplies a thin layer of abstraction on top of a Dynamically Linked Library and
requires little overhead or performance penalty after loading.

One benefit of COM is the ability to determine supported and optional functionality
through the QueryInterface method required of all COM components. The use of
aggregated component interfaces coupled with the success or failure of the
QueryInterface method on these interfaces provides a systematic approach to determining
if an interface is supported. This capability determination meant that not all functionality
was required of each component. We did require that each component support a common
OMAC interface to allow naming, state, diagnostics, and configuration information to be
available from all components. One major disadvantage of COM is that the lifetime of a
component is determined by reference counting with a component being deleted when its
reference count is zero. Adhering to the COM pointer reference paradigm is daunting;
with mismanaged pointer management potentially causing components to suddenly
“disappear”.

During development, there was a concern that COM would be too memory-intensive
since some motion programs could contain thousands of very small trajectory increments.
We ran a memory test to see how many motion segment COM components, each
corresponding to a step in a program, could be created before having the PC run out of
virtual memory. The test created more than 23 thousand COM motion segments of
roughly 2K in size on a Windows NT platform with 520M of virtual memory before
failing. The result is approximate wherein results would vary based on program size and
amount of system virtual memory. More troubling was the infamous PC blue screen of
death that resulted upon exhausting virtual memory.

Figure 2 FSM Diagnostic Playback

State Machine Logic

Finite State Machine (FSM) control logic is pervasive throughout the OMAC API. The
OMAC API defines two fundamental FSM – a lifecycle “OMAC” FSM and a “Task”
FSM. The lifecycle FSM is used to deploy, publish, connect, initialize and shutdown
components during the lifetime of the component. The Task FSM is a “lighter” state
logic for running programs
and individual program
steps. The two basic FSMs
are then specialized on a per
module/component/task
basis. To handle the FSM
logic, we developed a C++
FSM class library that could
handle state nesting and
other advanced state
machine logic. [5]

The benefits of using FSM
logic within the NIST GMC
testbed were twofold:
improved logical program
correctness and eased
traceability of program
logic. FSM flags can be set
within a component to catch
program logic errors by
“breakpointing” at any
deviation from the accepted
FSM logic, such as
unexpected events or invalid
state transition. Hardware faults or other system errors also can be pinpointed and traced
to a single step within a FSM. Figure 2 illustrates the NIST GMC testbed controller after
an amp fault causes the followingPosition state to transition to a fault state. The
arrow (added for this paper) shows the Amp Fault IO point as 1, indicating a fault. The
NIST GMC testbed controller saves snapshots of the FSM as well as data dumps at each
major state transition so that the sequencing buttons under the FSM display allow
forward and reverse playback to “reenact” the error.

Employing system-wide FSM logic is especially appealing to the manufacturing
industry for faster maintenance and diagnostic troubleshooting. The importance of the
FSM benefits of correctness and traceability cannot be understated because integrating
diagnostic tools in logic control is considered the number one challenge for
manufacturing systems. [8] The primary drawback to strict FSM compliance is agreeing
on acceptable component state logic that is neither trivial nor excessively complicated.

Template Component Development

Component development for motion controllers is laborious, as most components are
required to support a full life-cycle of component functionality in addition to its own

control functionality. The NIST GMC testbed employed a number of C++ component
templates to accelerate the coding. The C++ template is a complex, but powerful
programming mechanism that streamlines repetitive programming aspects. Microsoft
aggressively uses templates within its Active Template Language (ATL) as part of Visual
C++ that is one of the primary COM programming development tools. ATL and the use
of wizards simplify development by automating many of the multifaceted interfaces
required of a COM component. ATL is extremely lightweight in that only elements that
are required in an application are included, not the complete development library - as is
case when using the Microsoft Foundation Class (MFC) Library.

One shortcoming to ATL is that it does not implement COM inheritance without the
use of “chaining” of interfaces. Although helpful, chained COM objects have difficulty in
sharing member variables or common interfaces. We developed C++ inheritance
interface templates, but this required a major learning curve to overcome the tricks ATL
uses in instantiating COM objects.

SUMMARY

This paper gives an overview the NIST GMC testbed effort to validate the OMAC API
specification. We have some empirical observations concerning this effort. We found the
development of common C++ templates to implement COM control components took
months to develop, but once available, speeded development and improved component
reliability. We found FSM traceability invaluable in solving the number one challenge in
manufacturing systems – better program logic diagnostics. The OMAC API validation is
still preliminary and there are more tests to run. Ultimately, we would like to test
communication and functionality aspects of components with a rigorous set of simulated
errors and increasing processor loads to see at what point breakdowns occur.

REFERENCES

1. Box, D., Brown, K., Ewald, T., and Sells, C., Effective COM, Addison-Wesley Longman,
Reading, Massachusetts, 1999.

2. Cheng, H., Proctor, F.M, and Michaloski J.L., and Shackleford,W.P, “Real-Time Computing
in Open Systems for Manufacturing," JCISE: Vol. 1, No. 1, March 2001.

3. Dugenske, Andrew, “The Framework Implementation Project,” CIRCUITS ASSEMBLY,
Manhasset, NY, March 2001.

4. Evans, J., Frechette, S., Horst, J., Huang, H., Kramer, T., Messina, E., and Proctor, F.,
“Analysis of Dimensional Metrology Standards,” NISTIR 6847, National Institute of
Standards and Technology, Gaithersburg, MD, December 2001.

5. Finite State Machine Library, www.isd.mel.nist.gov/projects/omacapi/Software
6. Kemmerer, S., “STEP: The Grand Experience,” NIST Special Publication 939, National

Institute of Standards and Technology, Gaithersburg, MD, 1999.
7. Microsoft Corporation, “Component Object Model,” http://www.microsoft.com/com
8. NSF Workshop on Logic Control for Manufacturing Systems, University of Michigan, Ann

Arbor, June 26-27, 2000.
9. Open, Modular, Architecture Group (OMAC) User’s Group, http://www.arcweb.com/omac/
10. Rational Software Corporation, UML 1.3 Documentation, www.rational.com/uml
11. Rockwell Automation – Allen Bradley, “Using the Windows NT Operating System for Soft

Real-time Control - Separating Fact from Fiction”, White Paper, 1998.

